Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system

نویسندگان

  • Mohammad Zounemat-Kermani
  • Ali-Asghar Beheshti
  • Behzad Ataie-Ashtiani
  • Saeed-Reza Sabbagh-Yazdi
چکیده

The process of local scour around bridge piers is fundamentally complex due to the three-dimensional flow patterns interacting with bed materials. For geotechnical and economical reasons, multiple pile bridge piers have become more and more popular in bridge design. Although many studies have been carried out to develop relationships for the maximum scour depth at pile groups under clear-water scour condition, existing methods do not always produce reasonable results for scour predictions. It is partly due to the complexity of the phenomenon involved and partly because of limitations of the traditional analytical tool of statistical regression. This paper addresses the latter part and presents an alternative to the regression in the form of artificial neural networks, ANNs, and adaptive neuro-fuzzy inference system, ANFIS. Two ANNs model, feed forward back propagation, FFBP, and radial basis function, RBF, were utilized to predict the depth of the scour hole. Two combinations of input data were used for network training; the first input combination contains six-dimensional variables, which are flow depth, mean velocity, critical flow velocity, grain mean diameter, pile diameter, distance between the piles (gap), besides the number of piles normal to the flow and the number of piles in-linewith flow,while the second combination contains seven non-dimensional parameters which is a composition of dimensional parameters. The training and testing experimental data on local scour at pile groups are selected from several precious references. Networks’ results have been comparedwith the results of empiricalmethods that are already considered in this study. Numerical tests indicate that FFBP-NN model provides a better prediction than the othermodels. Also a sensitivity analysis showed that the pile diameter in dimensional variables and ratio of pile spacing to pile diameter in non-dimensional parameters are the most significant parameters on scour depth. 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...

متن کامل

The use of wavelet-artificial neural network and adaptive neuro-fuzzy inference system models to predict monthly precipitation

In water supply systems, One of the most important components as safety unit and the current controller (Switching flow and regulate the amount of flow) used in the arrangement of lines of water. In this study, according to multiple ponds in Tanguiyeh dam water pipeline to industrial and mining company Gol Gohar Sirjan Butterfly valve used in these ponds using Fluent software simulation has bee...

متن کامل

Optimization and design of Adaptive Neuro-Fuzzy Inference System using Particle Swarm Optimization and Fuzzy C-Means Clustering to predict the scour after bucket spillway

Additionally, if the materials at downstream of bucket spillway are erodible, the ogee spillway is likely to overturn by the time. Therefore, the prediction of the scour after bucket spillway is pretty important. In this study, the scour depths at downstream of bucket spillway are modeled using a new meta-heuristic model. This model is developed by combination of the Adaptive Neuro-Fuzzy Infere...

متن کامل

Linear genetic programming for prediction of circular pile scour

Genetic programming (GP) has nowadays attracted the attention of researchers in the prediction of hydraulic data. This study presents linear genetic programming (LGP), which is an extension to GP, as an alternative tool in the prediction of scour depth around a circular pile due to waves in medium dense silt and sand bed. Field measurements were used to develop LGP models. The proposed LGP mode...

متن کامل

Coastal Water Level Prediction Model Using Adaptive Neuro-fuzzy Inference System

This paper employs Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict water level that leads to flood in coastal areas. ANFIS combines the verbal power of fuzzy logic and numerical power of neural network for its action. Meteorological and astronomical data of Santa Monica, a coastal area in California, U. S. A., were obtained. A portion of the data was used to train the ANFIS network, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009